Sodium Ferulate Inhibits Neointimal Hyperplasia in Rat Balloon Injury Model

نویسندگان

  • Jing Zhang
  • Jing Chen
  • Jian Yang
  • Changwu Xu
  • Jiawang Ding
  • Jun Yang
  • Qing Guo
  • Qi Hu
  • Hong Jiang
چکیده

BACKGROUND/AIM Neointimal formation after vessel injury is a complex process involving multiple cellular and molecular processes. Inhibition of intimal hyperplasia plays an important role in preventing proliferative vascular diseases, such as restenosis. In this study, we intended to identify whether sodium ferulate could inhibit neointimal formation and further explore potential mechanisms involved. METHODS Cultured vascular smooth muscle cells (VSMCs) isolated from rat thoracic aorta were pre-treated with 200 µmol/L sodium ferulate for 1 hour and then stimulated with 1 µmol/L angiotensin II (Ang II) for 1 hour or 10% serum for 48 hours. Male Sprague-Dawley rats subjected to balloon catheter insertion were administrated with 200 mg/kg sodium ferulate (or saline) for 7 days before sacrificed. RESULTS In presence of sodium ferulate, VSMCs exhibited decreased proliferation and migration, suppressed intracellular reactive oxidative species production and NADPH oxidase activity, increased SOD activation and down-regulated p38 phosphorylation compared to Ang II-stimulated alone. Meanwhile, VSMCs treated with sodium ferulate showed significantly increased protein expression of smooth muscle α-actin and smooth muscle myosin heavy chain protein. The components of Notch pathway, including nuclear Notch-1 protein, Jagged-1, Hey-1 and Hey-2 mRNA, as well as total β-catenin protein and Cyclin D1 mRNA of Wnt signaling, were all significantly decreased by sodium ferulate in cells under serum stimulation. The levels of serum 8-iso-PGF2α and arterial collagen formation in vessel wall were decreased, while the expression of contractile markers was increased in sodium ferulate treated rats. A decline of neointimal area, as well as lower ratio of intimal to medial area was observed in sodium ferulate group. CONCLUSION Sodium ferulate attenuated neointimal hyperplasia through suppressing oxidative stress and phenotypic switching of VSMCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adenovirus-mediated intraarterial delivery of PTEN inhibits neointimal hyperplasia.

OBJECTIVE Phosphoinositide (PI) 3-kinase promotes vascular smooth muscle cell (VSMC) responses necessary for neointimal hyperplasia. We recently demonstrated that the inositol 3-phosphatase PTEN is expressed in VSMCs and that its overexpression inhibits these cellular responses. The purpose of this study was to determine the effects of adenovirus-mediated overexpression of PTEN on neointimal hy...

متن کامل

Fluid upstream shear stress of rabbit aortic stenosis inhibits neointimal hyperplasia by promoting endothelization after balloon injury

BACKGROUND Atherosclerosis is associated with disturbed blood flow characterized by low and oscillatory shear stress (SS), however, few study directly links SS to neointimal hyperplasia in animal model. This study was focused on the effects of changed SS upon the neointimal hyperplasia which responded to balloon injury in a novel rabbit model with partially-constricted abdominal aorta. METHOD...

متن کامل

Intramuscular gene transfer of CGRP inhibits neointimal hyperplasia after balloon injury in the rat abdominal aorta.

CGRP is a well-known neuropeptide that has various protective effects on cardiovascular system. Our previous studies have shown that CGRP inhibits vascular smooth muscle cell (VSMC) proliferation in vitro. The present study aimed to explore the role of the CGRP in neointimal formation after balloon injury in the rat aortic wall and the underlying mechanism. Gene transfer of CGRP was performed w...

متن کامل

Adrenomedullin receptor antagonism by calcitonin gene-related peptide(8-37) inhibits carotid artery neointimal hyperplasia after balloon injury.

Intimal injury by angioplasty results in a series of changes, including smooth muscle cell hyperplasia, that lead to vascular restenosis. Adrenomedullin, a potent vasodilator peptide, has natriuretic effects, and its plasma concentration is elevated in cardiovascular diseases. Adrenomedullin is secreted by endothelial and vascular smooth muscle cells, but its role in neointimal hyperplasia afte...

متن کامل

An essential role for stromal interaction molecule 1 in neointima formation following arterial injury.

AIMS There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell prolif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014